Minimum Conflict Individual Haplotyping from SNP Fragments and Related Genotype
نویسندگان
چکیده
The Minimum Error Correction (MEC) is an important model for haplotype reconstruction from SNP fragments. However, this model is effective only when the error rate of SNP fragments is low. In this paper, we propose a new computational model called Minimum Conflict Individual Haplotyping (MCIH) as an extension to MEC. In contrast to the conventional approaches, the new model employs SNP fragment information and also related genotype information, thereby a high accurate inference can be expected. We first prove the MCIH problem to be NP-hard. To evaluate the practicality of the new model we design an exact algorithm (a dynamic programming procedure) to implement MCIH on a special data structure. The numerical experience indicates that it is fairly effective to use MCIH at the cost of related genotype information, especially in the case of SNP fragments with a high error rate. Moreover, we present a feed-forward neural network algorithm to solve MCIH for general data structure and large size instances. Numerical results on real biological data and simulation data show that the algorithm works well and MCIH is a potential alternative in individual haplotyping.
منابع مشابه
A model of higher accuracy for the individual haplotyping problem based on weighted SNP fragments and genotype with errors
MOTIVATION In genetic studies of complex diseases, haplotypes provide more information than genotypes. However, haplotyping is much more difficult than genotyping using biological techniques. Therefore effective computational techniques have been in demand. The individual haplotyping problem is the computational problem of inducing a pair of haplotypes from an individual's aligned SNP fragments...
متن کاملPractical Algorithms and Fixed-Parameter Tractability for the Single Individual SNP Haplotyping Problem
Single nucleotide polymorphisms (SNPs) are the most frequent form of human genetic variation, of foremost importance for a variety of applications including medical diagnostic, phylogenies and drug design. The complete SNPs sequence information from each of the two copies of a given chromosome in a diploid genome is called a haplotype. The Haplotyping Problem for a single individual is as follo...
متن کاملO-36: Genome Haplotyping and Detection of Meiotic Homologous Recombination Sites in Single Cells, A Generic Method for Preimplantation Genetic Diagnosis
Background: Haplotyping is invaluable not only to identify genetic variants underlying a disease or trait, but also to study evolution and population history as well as meiotic and mitotic recombination processes. Current genome-wide haplotyping methods rely on genomic DNA that is extracted from a large number of cells. Thus far random allele drop out and preferential amplification artifacts of...
متن کاملHMEC: A Heuristic Algorithm for Individual Haplotyping with Minimum Error Correction
Haplotype is a pattern of single nucleotide polymorphisms (SNPs) on a single chromosome. Constructing a pair of haplotypes from aligned and overlapping but intermixed and erroneous fragments of the chromosomal sequences is a nontrivial problem. Minimum error correction approach aims to minimize the number of errors to be corrected so that the pair of haplotypes can be constructed through consen...
متن کاملOn the Complexity of SNP Block Partitioning Under the Perfect Phylogeny Model
Recent technologies for typing single nucleotide polymorphisms (SNPs) across a population are producing genome-wide genotype data for tens of thousands of SNP sites. The emergence of such large data sets underscores the importance of algorithms for large-scale haplotyping. Common haplotyping approaches first partition the SNPs into blocks of high linkage-disequilibrium, and then infer haplotype...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2006